Fourier Analysis
Review:

- We construct a cts function on the circle, say g, such that

$$
S_{N} g(0) \nrightarrow g(0)
$$

Chap 4. Applications of Fourier series.

We are going to give the application of Fownier series in geometry, number theory, analysis and $P D E$.
\$4.1 Isoperimetric inequality.
Thy 1. Let Γ be a C^{1} simple closed curve in the plane.
Let l denote the length of Γ, let A denote the Area of the region bounded by $[$. Then

$$
A \leqslant \frac{l^{2}}{4 \pi}
$$

Moreover " $=$ " holds if and only if Γ is a circle.

$$
\begin{aligned}
& A=\operatorname{Area}(\Omega) \\
& l=\text { length }(\Gamma)
\end{aligned}
$$

Then $A \leqslant \frac{l^{2}}{4 \pi}$.

Def. A parametrized curve in \mathbb{R}^{2} is a mapping

$$
\gamma: \quad[a, b] \rightarrow \mathbb{R}^{2}
$$

The image of $\gamma, \quad\{\gamma(t): t \in[a, b]\}$, is called a curve, denoted by Γ.

Def. We say $\gamma=\gamma(t), \quad t \in[a, b]$, is c^{1} if

$$
t \mapsto \gamma(t) \text { is } c^{1} \text { on }[a, b], \gamma^{\prime}(t) \neq 0 \text { on }[a, b]
$$

More precisely, writing $\gamma(t)=(x(t), y(t))$, γ is $c^{1} \Leftrightarrow$ both $x(t)$ and $y(t)$ are c^{1} on $[a, b]$. and $\quad\left(x^{\prime}(t), y^{\prime}(t)\right) \neq(0,0)$ on $[a, b]$.

Fact: The length of a C^{1} parametrized curve γ is given by

$$
\text { length }(\Gamma)=\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t
$$

where $\quad\left|\gamma^{\prime}(t)\right|=\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}}$
for $\gamma(t)=(x(t), y(t)), \quad t \in[a, b]$

Def. A parametrized curve $\gamma:[0, l] \rightarrow \mathbb{R}^{2}$ is said to be parametrized by arclength if

$$
\left|\gamma^{\prime}(t)\right|=1 \quad \text { for } \quad 0 \leqslant t \leqslant l .
$$

The length of the curve between $\gamma(0)$ and $\gamma(s)$

$$
=\int_{0}^{s}\left|\gamma^{\prime}(t)\right| d t=\int_{0}^{s} 1 d t=s
$$

It is not difficult to check that any c^{1} simple curve can be reparametrized by arclength.

Lem 2. Let f, g be integrable on the circle.
Then $\langle f, g\rangle=\sum_{n=-\infty}^{\infty} \hat{f}_{(n)} \hat{g}_{(n)}$,
where

$$
\langle f, g\rangle=\frac{1}{2 \pi} \int_{0}^{\pi} f(x) \overline{g(x)} d x
$$

Pf. This result is a generization of the Parseval identity. Indeed if $f=g$, then (*) becomes the Parserval identity To prove (*), let us use the following identity

$$
\langle f, g\rangle=\frac{1}{4}\left(\|f+g\|^{2}-\|f-g\|^{2}+i\left(\|f+i g\|^{2}-\|f-i g\|^{2}\right)\right)
$$

which can be checked directly. Then by the Parseval identity

$$
\begin{aligned}
\langle f, g\rangle=\frac{1}{4}\left(\sum_{n=-\infty}^{\infty}\right. & |\hat{f}(n)+\hat{g}(n)|^{2}-|\hat{f}(n)-\hat{g}(n)|^{2} \\
& +i\left(|\hat{f}(n)+i \hat{g}(n)|^{2}-|\hat{f}(n)-i \hat{g}(n)|^{2} \mid\right)
\end{aligned}
$$

$$
=\sum_{n=-\infty}^{\infty} \hat{f}(n) \widehat{g}(n) .
$$

Proof of the isoperimetric inequality:
By taking a possible transformation

$$
(x, y) \rightarrow(\delta x, \delta y)
$$

if necessary, we may assume that

$$
l(\Gamma)=2 \pi
$$

Parametrize Γ by its arclength,

$$
\gamma=\gamma(t): 0 \leqslant t \leqslant 2 \pi
$$

such that

$$
\left|\gamma^{\prime}(t)\right|=\sqrt{X^{\prime}(t)^{2}+y^{\prime}(t)^{2}}=1 \text { for } t \in[0,2 \pi]
$$

To estimate $A=\operatorname{Area}(\Omega)$, let us use Green Thu:

Green the: For C^{1} functions $P(x, y)$ and $Q(x, y)$,

$$
\oint_{\Gamma} P(x, y) d x+Q(x, y) d y=\iint_{\Omega} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d x d y
$$

In this theorem, taking $P(x, y) \equiv 0$ and $Q(x, y)=x$ gives

$$
\oint_{\Gamma} x d y=\iint_{\Omega} 1 d x d y=\operatorname{Area}(\Omega)=A
$$

That is,

$$
A=\oint_{\Gamma} x d y=\int_{0}^{2 \pi} x(t) y^{\prime}(t) d t
$$

Next we need to show that

$$
A=\int_{0}^{2 \pi} x(t) y^{\prime}(t) d t \leqslant \frac{l^{2}}{4 \pi}=\frac{(2 \pi)^{2}}{4 \pi}=\pi
$$

Under the condition $X^{\prime}(t)^{2}+y^{\prime}(t)^{2}=1$.

For this purpose, we expand $x(t), y(t)$ into their Founder Series on $[0,2 \pi]$

$$
x(t)=\sum_{n=-\infty}^{\infty} a_{n} e^{i n t}, y(t)=\sum_{n=-\infty}^{\infty} b_{n} e^{i n t}
$$

(the above Fomiers converge because $x(t), y(t)$ are diff.)

$$
\begin{aligned}
& x^{\prime}(t) \sim \sum_{n=-\infty}^{\infty} \text { in } a_{n} e^{i n t}, \quad y^{\prime}(t) \sim \sum \text { in } b_{n} e^{i n t} . \\
& \quad\left(\hat{f}^{\prime}(n)=\operatorname{in} \hat{f}_{(n)}\right)
\end{aligned}
$$

By Parseval identity

$$
\begin{aligned}
& \left.\frac{1}{2 \pi} \int_{0}^{2 \pi} x^{\prime}(t)^{2} d t=\sum_{n=-\infty}^{\infty} \right\rvert\, \text { in }\left.a_{n}\right|^{2}=\sum_{n=-\infty}^{\infty} n^{2}\left|a_{n}\right|^{2} . \\
& \frac{1}{2 \pi} \int_{0}^{2 \pi} y^{\prime}(t)^{2} d t=\sum_{n=-\infty}^{\infty} n^{2}\left|b_{n}\right|^{2} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
1=\frac{1}{2 \pi} \int_{0}^{2 \pi} x^{\prime}(t)^{2}+y^{\prime}(t)^{2} d t=\sum_{n=-\infty}^{\infty} n^{2}\left(\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2}\right) \tag{*}
\end{equation*}
$$

Also by the generalized Parseval identity,

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi} x(t) y^{\prime}(t) d t & =\frac{1}{2 \pi} \int_{0}^{2 \pi} x(t) \overline{y^{\prime}(t)} d t \\
& =\left\langle x(t), y^{\prime}(t)\right\rangle \\
& =\sum_{n=-\infty}^{\infty} \widehat{x}(n) \cdot \overline{y^{\prime}(n)} \\
& =\sum_{n=-\infty}^{\infty} a_{n} \overline{i n b_{n}} \\
& =\sum_{n=-\infty}^{\infty}-i n a_{n} \overline{b_{n}}
\end{aligned}
$$

Hence $A=\int_{0}^{2 \pi} x(t) y^{\prime}(t) d t=2 \pi \cdot \sum_{n=-\infty}^{\infty}\left(-\operatorname{in} a_{n} \overline{b_{n}}\right)$.

So

$$
\begin{aligned}
A & =2 \pi\left|\sum_{n=-\infty}^{\infty}\left(-i n a_{n} \overline{b_{n}}\right)\right| \\
& \leqslant 2 \pi \sum_{n=-\infty}^{\infty}|n|\left|a_{n}\right|\left|b_{n}\right| \\
& \leqslant 2 \pi \sum_{n=-\infty}^{\infty}|n| \frac{\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2}}{2} \\
& \leqslant 2 \pi \cdot \sum_{n=-\infty}^{\infty}|n|^{2} \frac{\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2}}{2} \\
& =\pi \quad\left(b_{1}(*)\right) \cdot
\end{aligned}
$$

This proves the iso perimetric inequality.

